Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

5-Butylamino-2-[2-(dimethylamino)ethyl]-1H-benz[de]isoquinoline-1,3(2H)dione

Li-Juan Xie‡

Institute of Molecular Medicine, Huaqiao University, Quanzhou, Fujian 362021, People's Republic of China. Correspondence e-mail: xielijuan@hgu.edu.cn

Received 20 April 2010; accepted 19 May 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.007 Å; R factor = 0.068; wR factor = 0.175; data-to-parameter ratio = 15.1.

The title compound, C20H25N3O2, is a new amonafide analogue, which exhibits antitumor activity. The asymmetric unit contains two molecules with similar conformations for the substituted aliphatic chains. The two independent molecules form dmers through N-H···N hydrogen bonds. The crystal structure is stabilized via $\pi - \pi$ stacking interactions, the shortest centroid-centroid separation between six-membered rings being 3.673 (2) Å.

Related literature

For general background to amonafide and its antitumour activity, see: Braña et al. (1981, 2001); Braña & Ramos (2001); Ratain et al. (1991, 1993). For the synthesis of amonafide analogues, see: Xie et al. (2009).

Experimental . .

Crystal data	
C ₂₀ H ₂₅ N ₃ O ₂	a = 11.5978 (12) Å
$M_r = 339.43$	b = 12.5362 (13) Å
Triclinic, $P\overline{1}$	c = 14.3721 (16) Å

$\alpha = 72.329 \ (2)^{\circ}$	
$\beta = 70.599 \ (2)^{\circ}$	
$\gamma = 70.759 \ (2)^{\circ}$	
V = 1816.1 (3) Å ³	
Z = 4	

Data collection

Bruker SMART APEX CCD area-
detector diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
$T_{\min} = 0.739, \ T_{\max} = 1.000$

Refinement

 $\begin{array}{l} R[F^2>2\sigma(F^2)]=0.068\\ wR(F^2)=0.175 \end{array}$ H atoms treated by a mixture of S = 0.867018 reflections 466 parameters 3 restraints

refinement $\Delta \rho_{\rm max} = 0.34$ e Å⁻³ $\Delta \rho_{\rm min} = -0.25$ e Å⁻³

Mo $K\alpha$ radiation $\mu = 0.08 \text{ mm}^{-1}$

 $0.36 \times 0.33 \times 0.08 \text{ mm}$

10049 measured reflections 7018 independent reflections

3025 reflections with $I > 2\sigma(I)$

independent and constrained

T = 293 K

 $R_{\rm int} = 0.059$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\frac{N2-H2\cdots N6}{N5-H5\cdots N3}$	0.86 (2)	2.33 (2)	3.176 (5)	173 (3)
	0.85 (2)	2.37 (2)	3.220 (5)	172 (4)

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

The author is grateful for the support of the Scientific Research Foundation of Huaqiao University (09BS406) and the State Key Laboratory of Oncology in South China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2282).

References

- Braña, M. F., Cacho, M., Gradillas, A., De Pascual-Teresa, B. & Ramos, A. (2001). Curr. Pharm. Des. 7, 1745-1780.
- Braña, M. F. & Ramos, A. (2001). Curr. Med. Chem. Anti-Cancer Agents, 1, 237-255.
- Braña, M. F., Sanz, A. M., Castellano, J. M., Roldan, C. M. & Roldan, C. (1981). Eur. J. Med. Chem. 16, 207-212.
- Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Ratain, M. J., Mick, R., Berezin, F., Janisch, L., Schilsky, R. L., Vogelzang, N. J. & Lane, L. B. (1993). Cancer Res. 53, 2304-2308.
- Ratain, M. J., Mick, R., Berezin, F., Janisch, L., Schilsky, R. L., Williams, S. F. & Smiddy, J. (1991). Clin. Pharmacol. Ther. 50, 573-579.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Xie, L., Xu, Y., Wang, F., Liu, J., Qian, X. & Cui, J. (2009). Bioorg. Med. Chem. 17, 804-810.

‡ Other affiliation: State Key Laboratory of Oncology in South China, Guangzhou, Guangdong 510060, People's Republic of China

Acta Cryst. (2010). E66, 01454 [doi:10.1107/81600536810018702]

5-Butylamino-2-[2-(dimethylamino)ethyl]-1H-benz[de]isoquinoline-1,3(2H)-dione

L.-J. Xie

Comment

Amonafide (Braña *et al.*, 1981, 2001; Braña & Ramos, 2001) was the first compound of the naphthalimide family that reached the clinical trial stage and exhibited excellent antitumour activity against advanced breast cancer. However, in the clinical studies, it was found that amonafide was easily metabolized to *N*-acetyl-amonafide by enzyme *N*-acetyltransferase, which caused a high-variable, unpredictable toxicity (Ratain *et al.*, 1991, 1993). In order to reduce the unpredictable toxic effect of the amonafide, we synthesized a series of amonafide analogues (Xie *et al.*, 2009) involved the title compound, which is being reported in this article.

The molecular structure of the title compound is shown in Fig. 1. The asymmetric unit contains two independent molecules, and it is observed that the butyl chains do not present the common all-*trans* conformation. This uncommon feature could be attributed to formation of intermolecular N—H···N hydrogen bonds in the asymmetric unit [N2··· N6 and N3···N5], which involve the butyl and the dimethylamino groups, and reduce the intermolecular hindrance. The crystal structure is stabilized *via* π - π stacking interactions [centroid-centroid separations: 3.673 (2) and 3.693 (2) Å] and intermolecular N—H···N hydrogen bonds, which lead to a supramolecular network of stacked molecules in 1D chains (Fig. 2). Apart from the functional groups butylamino and *N*,*N*-dimethylamino-ethylamino, the central 1,8-naphthalimide fused rings system is almost planar.

Experimental

A mixture of 3-bromide-1,8-naphthalic anhydride (277 mg, 1.0 mmol) and *N*,*N*-dimethylethyldiamine (92 mg, 1.0 mmol) was refluxed in EtOH (15 ml) for 2 h, to give the intermediate 5-bromo-2-[2-(dimethylamino)ethyl]-1*H*-benz[*de*]isoquinoline-1,3(2*H*)-dione. This intermediate (174 mg, 0.5 mmol), CuI (9 mg, 0.05 mmol), proline (11 mg, 0.1 mmol), Cs₂CO₃ (244 mg, 0.75 mmol) and *n*-butylamine (0.75 mmol) in dry DMSO (2 ml) were mixed and stirred at 383 K for 9 h under nitrogen. The crude products were purified by chromatography on silica gel with a mixture of CH₂Cl₂ and MeOH as eluent. Single crystals of the title compound were obtained from a CH₂Cl₂—MeOH solution.

Refinement

C-bonded H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic), 0.97 (methylene) or 0.96 Å (methyl). Isotropic displacement parameters were computed as $U_{iso}(H) = 1.2U_{eq}(\text{carrier C})$ for methylene and aromatic H atoms, and $U_{iso}(H) = 1.5U_{eq}(\text{carrier C})$ for methyl groups. Amine H atoms H2 and H5 were found in a difference map and refined freely. **Figures**

Fig. 1. The structure of the title compound showing 30% probability displacement ellipsoids and the atom labeling scheme. H atoms are omitted for clarity.

Fig. 2. Packing diagram with H bonds indicated by dashed lines.

5-Butylamino-2-[2-(dimethylamino)ethyl]-1*H*-benz[*de*]isoquinoline- 1,3(2*H*)-dione

Crystal data	
$C_{20}H_{25}N_{3}O_{2}$	Z = 4
$M_r = 339.43$	F(000) = 728
Triclinic, PT	$D_{\rm x} = 1.241 { m Mg m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 11.5978 (12) Å	Cell parameters from 1325 reflections
b = 12.5362 (13) Å	$\theta = 5.2 - 49.0^{\circ}$
c = 14.3721 (16) Å	$\mu = 0.08 \text{ mm}^{-1}$
$\alpha = 72.329 \ (2)^{\circ}$	T = 293 K
$\beta = 70.599 \ (2)^{\circ}$	Prismatic, yellow
$\gamma = 70.759 \ (2)^{\circ}$	$0.36 \times 0.33 \times 0.08 \text{ mm}$
V = 1816.1 (3) Å ³	

Data collection

Bruker SMART APEX CCD area-detector diffractometer	7018 independent reflections
Radiation source: fine-focus sealed tube	3025 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.059$
ϕ and ω scans	$\theta_{\text{max}} = 26.0^{\circ}, \ \theta_{\text{min}} = 1.9^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2001)	$h = -14 \rightarrow 13$
$T_{\min} = 0.739, T_{\max} = 1.000$	$k = -15 \rightarrow 11$
10049 measured reflections	$l = -17 \rightarrow 16$

Refinement

Refinement on F^2

Secondary atom site location: difference Fourier map

Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.068$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.175$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0653P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
<i>S</i> = 0.86	$(\Delta/\sigma)_{max} < 0.001$
7018 reflections	$\Delta \rho_{max} = 0.34 \text{ e } \text{\AA}^{-3}$
466 parameters	$\Delta \rho_{min} = -0.25 \text{ e } \text{\AA}^{-3}$
3 restraints	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
0 constraints	Extinction coefficient: 0.0040 (10)

Primary atom site location: structure-invariant direct methods

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.6424 (3)	0.8935 (2)	0.2061 (2)	0.0695 (9)
O2	0.4583 (2)	0.7887 (2)	0.54144 (19)	0.0625 (8)
O3	0.8585 (3)	0.6222 (3)	0.8127 (2)	0.0754 (9)
O4	0.6754 (3)	0.5191 (3)	0.6307 (2)	0.0700 (9)
N1	0.5553 (3)	0.8357 (3)	0.3739 (2)	0.0481 (8)
N2	0.6845 (3)	0.9030 (3)	0.7247 (3)	0.0592 (10)
N3	0.6185 (3)	0.6109 (3)	0.2983 (2)	0.0537 (9)
N4	0.7643 (3)	0.5748 (3)	0.7207 (2)	0.0518 (8)
N5	0.8927 (4)	0.6479 (3)	0.2640 (3)	0.0665 (11)
N6	0.5323 (3)	0.7148 (3)	0.8571 (2)	0.0537 (9)
C1	0.6412 (4)	0.8876 (3)	0.2925 (3)	0.0508 (10)
C2	0.5400 (4)	0.8308 (3)	0.4763 (3)	0.0480 (10)
C3	0.6272 (3)	0.8762 (3)	0.4991 (3)	0.0394 (9)
C4	0.7179 (3)	0.9258 (3)	0.4200 (3)	0.0416 (9)
C5	0.7264 (3)	0.9327 (3)	0.3189 (3)	0.0461 (10)
C6	0.8156 (4)	0.9811 (3)	0.2421 (3)	0.0563 (11)
Н6	0.8212	0.9855	0.1750	0.068*
C7	0.8974 (4)	1.0234 (4)	0.2660 (3)	0.0628 (12)
H7	0.9573	1.0563	0.2144	0.075*
C8	0.8902 (3)	1.0169 (3)	0.3642 (3)	0.0578 (11)
H8	0.9458	1.0452	0.3784	0.069*
С9	0.8004 (3)	0.9683 (3)	0.4447 (3)	0.0453 (10)
C10	0.7902 (3)	0.9603 (3)	0.5474 (3)	0.0510 (10)
H10	0.8439	0.9890	0.5635	0.061*
C11	0.7023 (3)	0.9107 (3)	0.6237 (3)	0.0453 (10)
C12	0.6205 (3)	0.8696 (3)	0.5963 (3)	0.0455 (10)
H12	0.5599	0.8368	0.6472	0.055*
C13	0.7608 (4)	0.9397 (4)	0.7643 (3)	0.0675 (13)
H13A	0.7753	1.0137	0.7232	0.081*
H13B	0.8422	0.8837	0.7618	0.081*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C14	0.6929 (5)	0.9512 (5)	0.8749 (3)	0.108 (2)
H14A	0.6063	0.9957	0.8775	0.130*
H14B	0.6903	0.8744	0.9163	0.130*
C15	0.7481 (6)	1.0049 (6)	0.9201 (4)	0.123 (2)
H15A	0.8336	0.9585	0.9202	0.148*
H15B	0.7003	1.0024	0.9901	0.148*
C16	0.7529 (6)	1.1257 (5)	0.8708 (4)	0.129 (2)
H16A	0.8098	1.1282	0.8046	0.194*
H16B	0.7821	1.1557	0.9105	0.194*
H16C	0.6700	1.1718	0.8654	0.194*
C17	0.4680 (4)	0.7897 (3)	0.3524 (3)	0.0567 (11)
H17A	0.4649	0.8224	0.2825	0.068*
H17B	0.3838	0.8145	0.3948	0.068*
C18	0.5044 (4)	0.6589 (3)	0.3698 (3)	0.0572 (11)
H18A	0.5162	0.6266	0.4375	0.069*
H18B	0.4349	0.6345	0.3667	0.069*
C19	0.6511 (4)	0.4846 (4)	0.3333 (3)	0.0811 (14)
H19A	0.5835	0.4551	0.3354	0.122*
H19B	0.6640	0.4649	0.3997	0.122*
H19C	0.7271	0.4513	0.2877	0.122*
C20	0.5971 (4)	0.6400 (4)	0.1975 (3)	0.0798 (14)
H20A	0.5241	0.6167	0.2020	0.120*
H20B	0.6697	0.6004	0.1532	0.120*
H20C	0.5835	0.7221	0.1714	0.120*
C21	0.8560 (4)	0.6183 (4)	0.7304 (3)	0.0565 (11)
C22	0.7540 (4)	0.5639 (3)	0.6306 (3)	0.0529 (11)
C23	0 8405 (3)	0.6098 (3)	0 5360 (3)	0.0464 (10)
C24	0.9353 (3)	0.6535 (3)	0.5412 (3)	0.0468 (10)
C25	0.9461 (3)	0.6572 (3)	0.6348 (3)	0.0524 (11)
C26	1.0414 (4)	0.6991 (4)	0.6382 (3)	0.0631 (12)
H26	1 0481	0 7028	0 6998	0.076*
C27	1 1271 (4)	0 7359 (4)	0 5481 (4)	0.0669(13)
H27	1 1913	0.7631	0.5505	0.080*
C28	1 1178 (4)	0.7325 (4)	0.4568 (3)	0.0646 (12)
H28	1 1761	0.7570	0 3981	0.078*
C29	1 0213 (3)	0.6923 (3)	0.4503 (3)	0.0508 (10)
C30	1 0069 (4)	0.6899 (3)	0.3573(3)	0.0580(11)
H30	1.0636	0.7150	0.2976	0.070*
C31	0.9108 (4)	0.6512 (3)	0.3526 (3)	0.0520(10)
C32	0.9100(1) 0.8288(3)	0.6093(3)	0.3520(3) 0.4460(3)	0.0520(10) 0.0513(10)
H32	0.7651	0.5807	0 4447	0.062*
C33	0.9693 (4)	0.6911 (4)	0.1663 (3)	0.002
H33A	1.0576	0.6533	0.1636	0.0001(15)
H33B	0.9576	0.7734	0.1576	0.097*
C34	0.9377 (6)	0 6714 (5)	0.0831 (4)	0 119 (2)
H34A	0.8494	0.7099	0.0861	0.142*
H34R	0.9478	0.5891	0.0931	0.142*
(35	1 0166 (7)	0.7137 (6)	-0.0212(4)	0.172 0.157 (3)
UJJ H35A	0.0636	0.7421	-0.0680	0.137 (3)
11337	0.7050	0./721	0.0000	0.100

H35B	1.0436	0.7785	-0.0196	0.188*
C36	1.1246 (7)	0.6296 (7)	-0.0586 (6)	0.207 (4)
H36A	1.1944	0.6293	-0.0367	0.310*
H36B	1.1453	0.6476	-0.1311	0.310*
H36C	1.1075	0.5546	-0.0334	0.310*
C37	0.6757 (4)	0.5292 (3)	0.8135 (3)	0.0606 (12)
H37A	0.7080	0.5170	0.8711	0.073*
H37B	0.6716	0.4546	0.8096	0.073*
C38	0.5425 (4)	0.6093 (4)	0.8305 (3)	0.0581 (11)
H38A	0.5146	0.6291	0.7694	0.070*
H38B	0.4858	0.5677	0.8840	0.070*
C39	0.4064 (4)	0.7929 (4)	0.8558 (3)	0.0811 (15)
H39A	0.3898	0.8027	0.7921	0.122*
H39B	0.4033	0.8667	0.8648	0.122*
H39C	0.3438	0.7604	0.9095	0.122*
C40	0.5512 (4)	0.6922 (4)	0.9577 (3)	0.0810 (15)
H40A	0.5368	0.7644	0.9754	0.121*
H40B	0.6362	0.6476	0.9576	0.121*
H40C	0.4930	0.6499	1.0062	0.121*
H2	0.649 (3)	0.850 (3)	0.763 (2)	0.065 (14)*
Н5	0.818 (3)	0.645 (4)	0.271 (3)	0.082 (17)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.087 (2)	0.081 (2)	0.0454 (18)	-0.0301 (18)	-0.0225 (16)	-0.0058 (15)
O2	0.0622 (18)	0.076 (2)	0.0559 (18)	-0.0390 (17)	-0.0017 (14)	-0.0159 (15)
O3	0.075 (2)	0.097 (3)	0.059 (2)	-0.0247 (19)	-0.0253 (17)	-0.0121 (17)
O4	0.0651 (19)	0.080 (2)	0.073 (2)	-0.0406 (18)	-0.0019 (15)	-0.0221 (16)
N1	0.0513 (19)	0.042 (2)	0.054 (2)	-0.0131 (16)	-0.0176 (16)	-0.0100 (16)
N2	0.070 (2)	0.063 (3)	0.052 (2)	-0.032 (2)	-0.0168 (19)	-0.0054 (19)
N3	0.058 (2)	0.054 (2)	0.053 (2)	-0.0076 (18)	-0.0205 (17)	-0.0165 (17)
N4	0.049 (2)	0.050 (2)	0.050 (2)	-0.0138 (17)	-0.0090 (16)	-0.0056 (16)
N5	0.068 (3)	0.079 (3)	0.051 (2)	-0.025 (2)	-0.010 (2)	-0.0106 (19)
N6	0.057 (2)	0.050 (2)	0.048 (2)	-0.0141 (18)	-0.0105 (16)	-0.0056 (16)
C1	0.055 (2)	0.042 (2)	0.051 (3)	-0.009 (2)	-0.016 (2)	-0.005 (2)
C2	0.048 (2)	0.040 (2)	0.054 (3)	-0.012 (2)	-0.011 (2)	-0.0103 (19)
C3	0.040 (2)	0.030 (2)	0.045 (2)	-0.0054 (17)	-0.0114 (17)	-0.0080 (17)
C4	0.040 (2)	0.031 (2)	0.047 (2)	-0.0052 (17)	-0.0103 (18)	-0.0046 (17)
C5	0.047 (2)	0.038 (2)	0.048 (2)	-0.0086 (19)	-0.0135 (19)	-0.0034 (18)
C6	0.057 (3)	0.057 (3)	0.044 (2)	-0.015 (2)	-0.009 (2)	-0.001 (2)
C7	0.051 (3)	0.063 (3)	0.063 (3)	-0.025 (2)	-0.006 (2)	0.004 (2)
C8	0.052 (3)	0.058 (3)	0.061 (3)	-0.022 (2)	-0.013 (2)	-0.003 (2)
C9	0.041 (2)	0.037 (2)	0.052 (2)	-0.0097 (18)	-0.0105 (19)	-0.0048 (18)
C10	0.051 (2)	0.045 (3)	0.061 (3)	-0.013 (2)	-0.020 (2)	-0.010 (2)
C11	0.048 (2)	0.040 (2)	0.047 (2)	-0.0108 (19)	-0.0140 (19)	-0.0057 (18)
C12	0.043 (2)	0.038 (2)	0.051 (2)	-0.0127 (19)	-0.0055 (18)	-0.0070 (18)
C13	0.080 (3)	0.073 (3)	0.061 (3)	-0.033 (3)	-0.026 (2)	-0.008 (2)

C14	0.153 (5)	0.167 (6)	0.049 (3)	-0.115 (5)	-0.034 (3)	0.005 (3)
C15	0.160 (6)	0.143 (6)	0.069 (4)	-0.065 (5)	-0.007 (4)	-0.024 (4)
C16	0.165 (6)	0.123 (6)	0.108 (5)	-0.057 (5)	-0.010 (4)	-0.044 (4)
C17	0.053 (2)	0.061 (3)	0.065 (3)	-0.012 (2)	-0.022 (2)	-0.021 (2)
C18	0.062 (3)	0.060 (3)	0.060 (3)	-0.024 (2)	-0.018 (2)	-0.016 (2)
C19	0.086 (3)	0.062 (3)	0.097 (4)	-0.006 (3)	-0.037 (3)	-0.021 (3)
C20	0.091 (3)	0.094 (4)	0.065 (3)	-0.016 (3)	-0.031 (3)	-0.029(3)
C21	0.048 (2)	0.051 (3)	0.066 (3)	-0.006 (2)	-0.020(2)	-0.007 (2)
C22	0.045 (2)	0.047 (3)	0.064 (3)	-0.012 (2)	-0.008 (2)	-0.014 (2)
C23	0.041 (2)	0.039 (2)	0.054 (3)	-0.0058 (19)	-0.0110 (19)	-0.0098 (19)
C24	0.039 (2)	0.033 (2)	0.061 (3)	0.0009 (18)	-0.016 (2)	-0.0060 (19)
C25	0.043 (2)	0.039 (2)	0.070 (3)	-0.004 (2)	-0.020(2)	-0.005 (2)
C26	0.055 (3)	0.057 (3)	0.079 (3)	-0.011 (2)	-0.031 (2)	-0.006(2)
C27	0.048 (3)	0.060 (3)	0.090 (4)	-0.018 (2)	-0.022 (3)	-0.004 (3)
C28	0.048 (3)	0.057 (3)	0.078 (3)	-0.015 (2)	-0.015 (2)	0.001 (2)
C29	0.040 (2)	0.038 (2)	0.066 (3)	-0.0065 (19)	-0.013 (2)	-0.004 (2)
C30	0.045 (2)	0.049 (3)	0.064 (3)	-0.008 (2)	-0.006 (2)	-0.003 (2)
C31	0.050 (2)	0.036 (2)	0.060 (3)	-0.006 (2)	-0.012 (2)	-0.004 (2)
C32	0.044 (2)	0.043 (2)	0.067 (3)	-0.012 (2)	-0.011 (2)	-0.014 (2)
C33	0.080 (3)	0.082 (4)	0.062 (3)	-0.021 (3)	-0.005 (3)	-0.006(3)
C34	0.163 (6)	0.124 (5)	0.058 (3)	-0.052 (5)	-0.001 (4)	-0.018 (3)
C35	0.190 (7)	0.125 (6)	0.086 (5)	-0.025 (6)	0.024 (5)	-0.009 (4)
C36	0.196 (9)	0.188 (9)	0.203 (8)	-0.089(7)	0.074 (7)	-0.090(7)
C37	0.063 (3)	0.053 (3)	0.057 (3)	-0.019 (2)	-0.010 (2)	-0.001 (2)
C38	0.055 (3)	0.063 (3)	0.052 (3)	-0.025 (2)	-0.005 (2)	-0.005 (2)
C39	0.064 (3)	0.074 (4)	0.080 (3)	-0.011 (3)	0.000 (3)	-0.009 (3)
C40	0.103 (4)	0.092 (4)	0.048 (3)	-0.034 (3)	-0.016 (3)	-0.009 (2)

Geometric parameters (Å, °)

1.216 (4)	C17—C18	1.515 (5)
1.222 (4)	С17—Н17А	0.9700
1.209 (4)	С17—Н17В	0.9700
1.218 (4)	C18—H18A	0.9700
1.406 (4)	C18—H18B	0.9700
1.406 (4)	C19—H19A	0.9600
1.469 (4)	С19—Н19В	0.9600
1.375 (4)	С19—Н19С	0.9600
1.442 (5)	C20—H20A	0.9600
0.86 (2)	C20—H20B	0.9600
1.455 (5)	C20—H20C	0.9600
1.466 (4)	C21—C25	1.481 (5)
1.466 (5)	C22—C23	1.478 (5)
1.391 (5)	C23—C32	1.347 (5)
1.404 (5)	C23—C24	1.411 (5)
1.475 (4)	C24—C25	1.407 (5)
1.372 (5)	C24—C29	1.417 (5)
1.443 (5)	C25—C26	1.391 (5)
0.85 (2)	C26—C27	1.400 (5)
	1.216 (4) $1.222 (4)$ $1.209 (4)$ $1.218 (4)$ $1.406 (4)$ $1.406 (4)$ $1.406 (4)$ $1.469 (4)$ $1.375 (4)$ $1.442 (5)$ $0.86 (2)$ $1.455 (5)$ $1.466 (4)$ $1.466 (5)$ $1.391 (5)$ $1.404 (5)$ $1.475 (4)$ $1.372 (5)$ $1.443 (5)$ $0.85 (2)$	1.216(4) $C17$ — $C18$ $1.222(4)$ $C17$ — $H17A$ $1.209(4)$ $C17$ — $H17B$ $1.218(4)$ $C18$ — $H18A$ $1.406(4)$ $C18$ — $H18B$ $1.406(4)$ $C19$ — $H19A$ $1.469(4)$ $C19$ — $H19B$ $1.375(4)$ $C19$ — $H19C$ $1.442(5)$ $C20$ — $H20A$ $0.86(2)$ $C20$ — $H20B$ $1.455(5)$ $C20$ — $H20C$ $1.466(4)$ $C21$ — $C25$ $1.466(5)$ $C22$ — $C23$ $1.391(5)$ $C23$ — $C32$ $1.404(5)$ $C24$ — $C25$ $1.372(5)$ $C24$ — $C29$ $1.443(5)$ $C25$ — $C26$ $0.85(2)$ $C26$ — $C27$

N6—C38	1.444 (5)	C26—H26	0.9300
N6—C40	1.463 (4)	C27—C28	1.366 (5)
N6—C39	1.468 (5)	С27—Н27	0.9300
C1—C5	1.480 (5)	C28—C29	1.409 (5)
C2—C3	1.473 (5)	C28—H28	0.9300
C3—C12	1.351 (4)	C29—C30	1.410 (5)
C3—C4	1.412 (4)	C30—C31	1.382 (5)
C4—C5	1.401 (5)	С30—Н30	0.9300
C4—C9	1.415 (5)	C31—C32	1.426 (5)
C5—C6	1.380 (5)	С32—Н32	0.9300
C6—C7	1.400 (5)	C33—C34	1.467 (6)
С6—Н6	0.9300	С33—Н33А	0.9700
С7—С8	1.365 (5)	С33—Н33В	0.9700
С7—Н7	0.9300	C34—C35	1.514 (7)
C8—C9	1.408 (5)	C34—H34A	0.9700
C8—H8	0.9300	С34—Н34В	0.9700
C9—C10	1.416 (5)	C35—C36	1.413 (8)
C10-C11	1.375 (5)	С35—Н35А	0.9700
C10—H10	0.9300	С35—Н35В	0.9700
C11—C12	1.419 (5)	С36—Н36А	0.9600
C12—H12	0.9300	С36—Н36В	0.9600
C13—C14	1.550 (6)	С36—Н36С	0.9600
C13—H13A	0.9700	C37—C38	1.527 (5)
С13—Н13В	0.9700	С37—Н37А	0.9700
C14—C15	1.453 (7)	С37—Н37В	0.9700
C14—H14A	0.9700	C38—H38A	0.9700
C14—H14B	0.9700	C38—H38B	0.9700
C15—C16	1.476 (7)	С39—Н39А	0.9600
C15—H15A	0.9700	С39—Н39В	0.9600
C15—H15B	0.9700	С39—Н39С	0.9600
C16—H16A	0.9600	C40—H40A	0.9600
C16—H16B	0.9600	C40—H40B	0.9600
C16—H16C	0.9600	C40—H40C	0.9600
C2—N1—C1	124.9 (3)	N3—C19—H19C	109.5
C2—N1—C17	116.3 (3)	H19A—C19—H19C	109.5
C1—N1—C17	118.7 (3)	H19B—C19—H19C	109.5
C11—N2—C13	124.1 (3)	N3—C20—H20A	109.5
C11—N2—H2	113 (3)	N3—C20—H20B	109.5
C13—N2—H2	118 (3)	H20A—C20—H20B	109.5
C18—N3—C20	110.6 (3)	N3—C20—H20C	109.5
C18—N3—C19	108.1 (3)	H20A—C20—H20C	109.5
C20—N3—C19	109.0 (3)	H20B-C20-H20C	109.5
C22—N4—C21	125.5 (3)	O3—C21—N4	120.5 (4)
C22—N4—C37	115.9 (3)	O3—C21—C25	123.8 (4)
C21—N4—C37	118.4 (3)	N4—C21—C25	115.7 (4)
C31—N5—C33	122.4 (4)	O4—C22—N4	120.6 (4)
C31—N5—H5	113 (3)	O4—C22—C23	122.0 (4)
C33—N5—H5	120 (3)	N4—C22—C23	117.4 (4)
C38—N6—C40	111.6 (3)	C32—C23—C24	120.6 (3)

C38—N6—C39	109 5 (3)	$C_{32} - C_{23} - C_{22}$	1201(4)
C40—N6—C39	108.7 (3)	C24—C23—C22	119.3 (4)
01-C1-N1	120.0 (4)	$C_{25} - C_{24} - C_{23}$	1210(3)
01 - 01 - 05	123.7(4)	$C_{25} = C_{24} = C_{29}$	1202(4)
N1 - C1 - C5	1163(4)	$C_{23} - C_{24} - C_{29}$	1188(4)
02-02-11	120.0 (4)	$C_{26} = C_{25} = C_{24}$	120.0 (4)
02-C2-C3	123.2 (4)	$C_{26} - C_{25} - C_{21}$	119.2 (4)
N1-C2-C3	116.9 (3)	C_{24} — C_{25} — C_{21}	120.8 (4)
C12—C3—C4	120.1 (3)	C25-C26-C27	119.5 (4)
C12—C3—C2	119.6 (3)	C25—C26—H26	120.3
C4—C3—C2	120.3 (3)	С27—С26—Н26	120.3
C5—C4—C3	120.7 (3)	C28—C27—C26	121.1 (4)
C5—C4—C9	120.5 (3)	C28—C27—H27	119.4
C3—C4—C9	118.7 (3)	C26—C27—H27	119.4
C6—C5—C4	120.3 (4)	C27—C28—C29	121.0 (4)
C6—C5—C1	118.8 (4)	C27—C28—H28	119.5
C4-C5-C1	120.9 (3)	C29—C28—H28	119.5
C5—C6—C7	1194(4)	$C_{28} = C_{29} = C_{30}$	122.7 (4)
С5—С6—Н6	120.3	$C_{28} = C_{29} = C_{24}$	1182(4)
С7—С6—Н6	120.3	$C_{30} - C_{29} - C_{24}$	119.1 (4)
C8—C7—C6	120.7 (4)	$C_{31} - C_{30} - C_{29}$	1217(4)
C8—C7—H7	119.6	$C_{31} - C_{30} - H_{30}$	119.1
С6—С7—Н7	119.6	C_{29} C_{30} H_{30}	119.1
C7 - C8 - C9	121 5 (4)	N5-C31-C30	123 8 (4)
С7—С8—Н8	119.2	N5-C31-C32	1188(4)
C9—C8—H8	119.2	C30—C31—C32	117.4 (4)
C8—C9—C4	117.5 (4)	C23—C32—C31	122.3 (4)
C8—C9—C10	123.0 (4)	C23—C32—H32	118.8
C4—C9—C10	119.6 (3)	С31—С32—Н32	118.8
C11—C10—C9	121.1 (4)	N5—C33—C34	112.5 (4)
C11—C10—H10	119.5	N5—C33—H33A	109.1
C9—C10—H10	119.5	С34—С33—Н33А	109.1
C10-C11-N2	124.3 (4)	N5—C33—H33B	109.1
C10—C11—C12	118.0 (4)	С34—С33—Н33В	109.1
N2—C11—C12	117.7 (3)	H33A—C33—H33B	107.8
C3—C12—C11	122.6 (3)	C33—C34—C35	114.7 (5)
C3—C12—H12	118.7	C33—C34—H34A	108.6
C11—C12—H12	118.7	C35—C34—H34A	108.6
N2—C13—C14	109.9 (3)	С33—С34—Н34В	108.6
N2—C13—H13A	109.7	C35—C34—H34B	108.6
C14—C13—H13A	109.7	H34A—C34—H34B	107.6
N2—C13—H13B	109.7	C36—C35—C34	114.9 (6)
C14—C13—H13B	109.7	С36—С35—Н35А	108.5
H13A—C13—H13B	108.2	С34—С35—Н35А	108.5
C15—C14—C13	116.4 (4)	С36—С35—Н35В	108.5
C15—C14—H14A	108.2	С34—С35—Н35В	108.5
C13—C14—H14A	108.2	H35A—C35—H35B	107.5
C15—C14—H14B	108.2	С35—С36—Н36А	109.5
C13—C14—H14B	108.2	С35—С36—Н36В	109.5

H14A—C14—H14B	107.3	H36A—C36—H36B	109.5
C14—C15—C16	116.1 (5)	С35—С36—Н36С	109.5
C14—C15—H15A	108.3	H36A—C36—H36C	109.5
C16—C15—H15A	108.3	H36B—C36—H36C	109.5
C14—C15—H15B	108.3	N4—C37—C38	113.2 (3)
C16—C15—H15B	108.3	N4—C37—H37A	108.9
H15A—C15—H15B	107.4	С38—С37—Н37А	108.9
C15-C16-H16A	109.5	N4—C37—H37B	108.9
C15-C16-H16B	109.5	С38—С37—Н37В	108.9
H16A—C16—H16B	109.5	Н37А—С37—Н37В	107.8
C15—C16—H16C	109.5	N6—C38—C37	114.1 (3)
H16A—C16—H16C	109.5	N6—C38—H38A	108.7
H16B—C16—H16C	109.5	С37—С38—Н38А	108.7
N1—C17—C18	113.6 (3)	N6—C38—H38B	108.7
N1—C17—H17A	108.9	С37—С38—Н38В	108.7
C18—C17—H17A	108.9	H38A—C38—H38B	107.6
N1—C17—H17B	108.9	N6—C39—H39A	109.5
С18—С17—Н17В	108.9	N6—C39—H39B	109.5
H17A—C17—H17B	107.7	H39A—C39—H39B	109.5
N3—C18—C17	114.7 (3)	N6—C39—H39C	109.5
N3—C18—H18A	108.6	Н39А—С39—Н39С	109.5
C17—C18—H18A	108.6	H39B—C39—H39C	109.5
N3—C18—H18B	108.6	N6—C40—H40A	109.5
C17-C18-H18B	108.6	N6C40H40B	109.5
H18A—C18—H18B	107.6	H40A—C40—H40B	109.5
N3—C19—H19A	109.5	N6—C40—H40C	109.5
N3—C19—H19B	109.5	H40A—C40—H40C	109.5
H19A—C19—H19B	109.5	H40B—C40—H40C	109.5
C2—N1—C1—O1	-175.7 (3)	C22—N4—C21—O3	-178.5 (4)
C17—N1—C1—O1	-0.1 (5)	C37—N4—C21—O3	-2.9 (6)
C2—N1—C1—C5	4.2 (5)	C22—N4—C21—C25	1.3 (5)
C17—N1—C1—C5	179.8 (3)	C37—N4—C21—C25	177.0 (3)
C1—N1—C2—O2	176.4 (3)	C21—N4—C22—O4	175.8 (4)
C17—N1—C2—O2	0.8 (5)	C37—N4—C22—O4	0.1 (5)
C1—N1—C2—C3	-4.5 (5)	C21—N4—C22—C23	-4.9 (5)
C17—N1—C2—C3	179.8 (3)	C37—N4—C22—C23	179.4 (3)
O2—C2—C3—C12	1.6 (5)	O4—C22—C23—C32	4.1 (6)
N1—C2—C3—C12	-177.4 (3)	N4—C22—C23—C32	-175.2 (3)
O2—C2—C3—C4	-178.8 (3)	O4—C22—C23—C24	-175.7 (4)
N1—C2—C3—C4	2.2 (5)	N4—C22—C23—C24	5.0 (5)
C12—C3—C4—C5	179.6 (3)	C32—C23—C24—C25	178.3 (3)
C2—C3—C4—C5	0.0 (5)	C22—C23—C24—C25	-1.9 (5)
C12—C3—C4—C9	-0.2 (5)	C32—C23—C24—C29	-2.7 (5)
C2—C3—C4—C9	-179.8 (3)	C22—C23—C24—C29	177.1 (3)
C3—C4—C5—C6	-179.8 (3)	C23—C24—C25—C26	179.1 (3)
C9—C4—C5—C6	0.0 (5)	C29—C24—C25—C26	0.1 (5)
C3—C4—C5—C1	-0.3 (5)	C23—C24—C25—C21	-1.8 (5)
C9—C4—C5—C1	179.5 (3)	C29—C24—C25—C21	179.2 (3)
O1—C1—C5—C6	-2.2 (6)	O3—C21—C25—C26	1.1 (6)

N1-C1-C5-C6	177.9 (3)	N4-C21-C25-C26	-178.7 (3)
O1—C1—C5—C4	178.3 (4)	O3—C21—C25—C24	-178.0 (4)
N1-C1-C5-C4	-1.6 (5)	N4-C21-C25-C24	2.1 (5)
C4—C5—C6—C7	-0.1 (6)	C24—C25—C26—C27	-1.0 (6)
C1—C5—C6—C7	-179.6 (3)	C21—C25—C26—C27	179.9 (4)
C5—C6—C7—C8	0.3 (6)	C25—C26—C27—C28	0.8 (6)
C6—C7—C8—C9	-0.4 (6)	C26—C27—C28—C29	0.3 (6)
C7—C8—C9—C4	0.2 (6)	C27—C28—C29—C30	178.5 (4)
C7—C8—C9—C10	-179.9 (4)	C27—C28—C29—C24	-1.1 (6)
C5—C4—C9—C8	-0.1 (5)	C25—C24—C29—C28	0.9 (5)
C3—C4—C9—C8	179.8 (3)	C23—C24—C29—C28	-178.1 (3)
C5—C4—C9—C10	-179.9 (3)	C25—C24—C29—C30	-178.8 (3)
C3—C4—C9—C10	-0.1 (5)	C23—C24—C29—C30	2.2 (5)
C8—C9—C10—C11	-179.1 (4)	C28-C29-C30-C31	-179.4 (4)
C4—C9—C10—C11	0.7 (5)	C24—C29—C30—C31	0.3 (6)
C9—C10—C11—N2	-178.0 (3)	C33—N5—C31—C30	-3.5 (6)
C9—C10—C11—C12	-1.1 (5)	C33—N5—C31—C32	178.4 (4)
C13—N2—C11—C10	-3.9 (6)	C29—C30—C31—N5	179.6 (4)
C13—N2—C11—C12	179.2 (4)	C29—C30—C31—C32	-2.3 (6)
C4—C3—C12—C11	-0.2 (5)	C24—C23—C32—C31	0.6 (6)
C2—C3—C12—C11	179.4 (3)	C22—C23—C32—C31	-179.2 (3)
C10-C11-C12-C3	0.8 (5)	N5-C31-C32-C23	-179.9 (4)
N2-C11-C12-C3	178.0 (3)	C30—C31—C32—C23	1.9 (6)
C11—N2—C13—C14	164.1 (4)	C31—N5—C33—C34	176.3 (4)
N2-C13-C14-C15	-170.6 (5)	N5-C33-C34-C35	-179.2 (5)
C13-C14-C15-C16	61.5 (8)	C33—C34—C35—C36	93.2 (8)
C2—N1—C17—C18	-79.6 (4)	C22—N4—C37—C38	-77.6 (4)
C1—N1—C17—C18	104.4 (4)	C21—N4—C37—C38	106.3 (4)
C20—N3—C18—C17	-68.8 (4)	C40—N6—C38—C37	-68.5 (4)
C19—N3—C18—C17	172.0 (3)	C39—N6—C38—C37	171.0 (3)
N1—C17—C18—N3	-69.1 (4)	N4—C37—C38—N6	-70.1 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!\!-\!\!\!\!\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$
N2—H2…N6	0.86 (2)	2.33 (2)	3.176 (5)	173 (3)
N5—H5…N3	0.85 (2)	2.37 (2)	3.220 (5)	172 (4)

